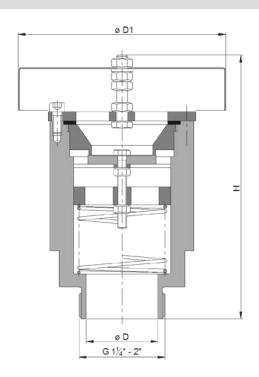

Type sheet Vacuum relief valve KITO® VS/o cont. ...



Application

As end-of-line device, for venting of tank installations for ventilation and to prevent inadmissible vacuum. Usually installed on top of a tank, if applicable in conjunction with a pressure relief valve on a common connecting pipe. Valve is not explosion-proof, thus cannot be used for flammable media.

Dimensions (mm) and settings (mbar)

size	D	D1	Н	kg	setting
G 1"	25	70	110	1	5 - 210
G 1 ¼"	32		145	3	
G 1 ½"	40	115			
G 2"	40				

Weight refers to the standard design

Design

	size G 1"	size G 1 ¼", G 1 ½" , G 2"	
housing	stainless steel mat. no. 1.4571		
valve seat / valve pallet	PTFE	stainless steel mat. no. 1.4571	
sealing	FEP	PTFE	
compression spring	stainless	stainless steel mat. no. 1.4571	
weather hood	stainless steel mat. no. 1.4301	stainless steel mat. no. 1.4571	
connection	th	threaded format	

Example for order

KITO® VS/o cont. 2"

(design with threaded connection G 2")

Without EC certificate and (€-marking

page 1 of 2

 KITO Armaturen GmbH
 J
 +49 (0) 531 23000-0

 Grotrian-Steinweg-Str. 1c
 ≜
 +49 (0) 531 23000-10

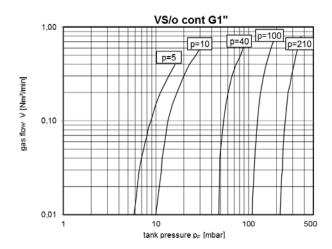
 D-38112 Braunschweig
 □
 www.kito.de

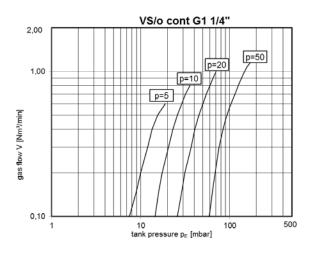
 VAT Reg.No DE812887561
 □
 info@kito.de

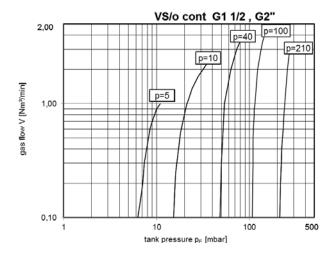
M 9 N / D 9 N

Date: 05-2018
Created: Abt. Doku KITO
Design subject to change

Type sheet Vacuum relief valve KITO® VS/o cont. ...




Performance curves


The flow capacity V refers to a density of air with ρ = 1.29 kg/m³. The flow capacity for gases with different densities can be calculated sufficiently accurate by the following approximation equation:

$$\overset{\cdot}{V}_{40\%} = \overset{\cdot}{V}_{b} \cdot \sqrt{\frac{\rho_{b}}{1.29}}$$

$$\overset{\cdot}{\mathrm{V}}_{\mathrm{b}} = \overset{\cdot}{\mathrm{V}}_{40\%} \cdot \sqrt{\frac{1.29}{\rho_{\mathrm{b}}}}$$

